Lower bounds on the coefficients of Ehrhart polynomials
نویسندگان
چکیده
We present lower bounds for the coefficients of Ehrhart polynomials of convex lattice polytopes in terms of their volume. We also introduce two formulas for calculating the Ehrhart series of a kind of a ”weak” free sum of two lattice polytopes and of integral dilates of a polytope. As an application of these formulas we show that Hibi’s lower bound on the coefficients of the Ehrhart series is not true for lattice polytopes without interior lattice points.
منابع مشابه
Best possible lower bounds on the coefficients of Ehrhart polynomials
For an integral convex polytope P ⊂ R, we recall i(P, n) = |nP∩Z|the Ehrhart polynomial of P. Let for r = 0, . . . , d,gr(P) be the r-th coefficients ofi(P, n). Martin Henk and Makoto Tagami gave the lower bounds on the coefficientsgr(P) in terms of the volume of P. In general, these bounds are not best possible.However, it is known that in the cases r ∈ {1, 2, d − 2}, these...
متن کاملBounds on the coefficients of tension and flow polynomials
The goal of this article is to obtain bounds on the coefficients of modular and integral flow and tension polynomials of graphs. To this end we use the fact that these polynomials can be realized as Ehrhart polynomials of inside-out polytopes. Inside-out polytopes come with an associated relative polytopal complex and, for a wide class of inside-out polytopes, we show that this complex has a co...
متن کاملMaximal Periods of ( Ehrhart ) Quasi - Polynomials 3
A quasi-polynomial is a function defined of the form q(k) = c d (k) k d + c d−1 (k) k d−1 + · · · + c0(k), where c0, c1,. .. , c d are periodic functions in k ∈ Z. Prominent examples of quasi-polynomials appear in Ehrhart's theory as integer-point counting functions for rational polytopes, and McMullen gives upper bounds for the periods of the cj (k) for Ehrhart quasi-polynomials. For generic p...
متن کامل0 M ay 2 00 7 MAXIMAL PERIODS OF ( EHRHART ) QUASI - POLYNOMIALS
A quasi-polynomial is a function defined of the form q(k) = c d (k) k d + c d−1 (k) k d−1 + · · · + c0(k), where c0, c1,. .. , c d are periodic functions in k ∈ Z. Prominent examples of quasi-polynomials appear in Ehrhart's theory as integer-point counting functions for rational polytopes, and McMullen gives upper bounds for the periods of the cj (k) for Ehrhart quasi-polynomials. For generic p...
متن کاملMaximal periods of (Ehrhart) quasi-polynomials
A quasi-polynomial is a function defined of the form q(k) = cd(k) k d + cd−1(k) k d−1 + · · · + c0(k), where c0, c1, . . . , cd are periodic functions in k ∈ Z. Prominent examples of quasipolynomials appear in Ehrhart’s theory as integer-point counting functions for rational polytopes, and McMullen gives upper bounds for the periods of the cj(k) for Ehrhart quasi-polynomials. For generic polyto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eur. J. Comb.
دوره 30 شماره
صفحات -
تاریخ انتشار 2009